Bibliography

[1] Dalto, Mladen. Deep neural networks for time series prediction with applications in ultra-short-term wind forecasting. Retrieved from https://www.fer.unizg.hr/_download/repository/KDI-Djalto.pdf

[2] Paul C. Doraiswamy , Bakhyt Akhmedov , Larry Beard, Alan Stern, and Richard Mueller (2007). OPERATIONAL PREDICTION OF CROP YIELDS USING MODIS DATA AND PRODUCTS. 2007 Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences Special Publications. Retrieved from https://www.ars.usda.gov/SP2UserFiles/person/1430/ISPRS_AGRIFISH_Final.pdf

[3] Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop yield assessment from remote sensing. Photogrammetric engineering & remote sensing, 69(6): 665-674. Retrieved from http://www.asprs.org/a/publications/pers/2003journal/june/2003_jun_665-674.pdf

[4] Stephan Estel, Tobias Kuemmerle, Camilo Alcántara, Christian Levers, Alexander Prishchepov, Patrick Hostert (2015). Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sensing of Environment 163: 312–325. Retrieved from http://www.sciencedirect.com/science/article/pii/S003442571500125X

[5] Stephan Estel, Tobias Kuemmerle, Christian Levers, Matthias Baumann, and Patrick Hostert (2016). Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environmental Research Letters 11: 024015 Retrieved from http://iopscience.iop.org/article/10.1088/1748-9326/11/2/024015/meta;jsessionid=C36E8D55A7A0457259676599CC6A2BBB.c1

[6] Jerry L. Hatfield and John H. Prueger (2010). Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices. Remote Sensing, 2, 562-578. doi:10.3390/rs2020562. Retrieved from http://www.mdpi.com/2072-4292/2/2/562/pdf

[7] Huang J, Wang X, Li X, Tian H, Pan Z (2013) Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR. PLoS ONE 8(8): e70816. doi:10.1371/journal.pone.0070816 Retrieved from http://dx.doi.org/10.1371/journal.pone.0070816

[8] Michael D. Johnson, William W. Hsieh, Alex J. Cannon, Andrew Davidson, & Frédéric Bédard (2016). Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agricultural and Forest Meteorology, 218–219: 74–84. Retrieved from http://www.sciencedirect.com/science/article/pii/S0168192315007546

[9] Li, A., Liang, S., Wang, A., & Qin, J. (2007). Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques. Photogrammetric Engineering & Remote Sensing, 73(10), 1149-1157. Retrieved from http://terpconnect.umd.edu/%7Esliang/papers/Li.PERS2007.pdf

[10] Barrett Lowe and Arun Kulkarni (2015). MULTISPECTRAL IMAGE ANALYSIS USING RANDOM FOREST. International Journal on Soft Computing (IJSC) Vol.6, No. 1, February 2015. DOI: 10.5121/ijsc.2015.6101 1. Retrieved from http://airccse.org/journal/ijsc/papers/6115ijsc01.pdf

[11] Bin Luo, Chenghai Yang, Jocelyn Chanussot, and Liangpei Zhang (2013). Crop Yield Estimation Based on Unsupervised Linear Unmixing of Multidate Hyperspectral Imagery. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 51, NO. 1. Retrieved from https://www.ars.usda.gov/SP2UserFiles/ad_hoc/62024005AerialApplicationResearch/2013Publications/Yang%20IEEE%20Trans%20GeoSci%20Remote%20Sens%2051(1)%20162-173.pdf

[12] Nami Maruyama, Fumiaki Takahashi, & Masahiro Takeuchi (2009). Prediction of an Outcome Using Trajectories Estimated from a Linear Mixed Model. Journal of Biopharmaceutical Statistics, 19:5, 779-790. DOI: 10.1080/10543400903105174. Retrieved from http://dx.doi.org/10.1080/10543400903105174

[13] Paswan, Raju Prasad, Begum, Shahin Ara (2014). ANN for Prediction of Area and Production of Maize Crop for Upper Brahmaputra Valley Zone of Assam. 2014 IEEE International Advance Computing Conference (IACC). Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6779513

[14] Pinter et al. 2003. Remote Sensing for Crop Management. Photogrammetric Engineering & Remote Sensing. 69(6): 647–664. Retrieved from http://asprs.org/a/publications/pers/2003journal/june/2003_jun_647-664.pdf

[15] Prasad, A. K., L. Chai, R. P. Singh, and M. Kafatos. 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation. 8(1): 26–33. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243405000553

[16] Shanahan, J., J. Schepers, D. Francis, G. Varvel, W. Wilhelm, J. Tringe, M. Schlemmer, and D. Major. 2001. Use of remote-sensing imagery to estimate corn grain yield. Agronomy Journal 93: 583–589. Retrieved from http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1009&context=agronomyfacpub

[17] Yan,L., Roy, D.P. (2014). Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sensing of Environment 144: 42–64. Retrieved from http://www.sciencedirect.com/science/article/pii/S0034425714000194

[18] Yan,L., Roy, D.P. (2016). Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sensing of Environment 172: 67–86. Retrieved from http://www.sciencedirect.com/science/article/pii/S0034425715301851

[19] Zhe Zhu, Curtis E.Woodcock (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment 144: 152–171. Retrieved from http://www.sciencedirect.com/science/article/pii/S0034425714000248